954

signals by pulsed microwave energy,” IEEE Trans. Microwave
Theory Tech., vol. MTT-22, pp. 583584, 1974.

[13] A. W. Guy, C. K. Chou, J. C. Lin, and D. Christensen, “Microwave-
induced acoustic effects in mammalian auditory systems and physical
materials,” Ann. NY Acad. Sci., vol. 247, pp. 194-218, 1975.

[14] A. H. Frey, “Human auditory system response to modulated
electromagnetic energy,” J. Appl. Physiol., vol. 17, pp. 689-692, 1962.

[15] A. H. Frey and R. Messenger, Jr., “Human perception of illumination
with pulsed ultra-high frequency electromagnetic energy,” Science,
vol. 181, pp. 356-358, 1973.

[16] C. A. Cain and W. J. Rissmann, “Microwave hearing in mammals at
3.0 GHz> selected papers from the 1975 Annual USNC/URSI
Symposium, published by the Bureau of Radiological Health, in
press.

[17] 1. S. Sokolnikoff, Mathematical Theory of Elasticity, 2nd ed. New
York: McGraw-Hill, 1956.

[18] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity.
Cambridge, England: Cambridge Univ. Press, 1927.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, NO. 11, NOVEMBER 1977

[19] J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill,
1941.

[20] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous
Media. New York: Addison-Wesley, 1960.

[21] R. J. Knops, “A reciprocal theorem for a first order theory of electro-
striction,” J. Appl. Math. and Phys. (ZAMP), vol. 14, pp. 148-155,
1963.

[22] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed.
London, England: Oxford Univ. Press, 1959.

[23] M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J.
Appl. Phys., vol. 27, pp. 240-253, 1956.

[24] J. F. Ready, “Effects due to absorption of laser radiation,” J. Appl.
Phys., vol. 36, pp. 462-468, 1965.

[25] A. Papoulis, The Fourier Integral. New York: McGraw-Hill, 1962.

[26] M. Abramowitz and 1. A. Stegun, Eds., Handbook of Mathematical
Functions, Publication no. 55, NBS-Applied Mathematics Series.
Washington, DC: U.S. Government Printing Office, 1964, p. 972.

Input Impedance of Coaxial Line to Circular
Waveguide Feed

M. D. DESHPANDE, STUDENT MEMBER, IEEE, AND B. N. DAS

Abstract—The expressions for the real and imaginary parts of the
input impedance seen by a coaxial line driving a thin cylindrical probe
in a dominant TE,, mode circular waveguide are derived. The
analysis is carried out by assuming that the cylindrical post is
replaced by a curvilinear strip having maximum width equal to the
diameter of the probe. Theoretical results on input VSWR and input
impedance seen by a coaxial line are in close agreement with
experimental data.

I. INTRODUCTION

LECTROMAGNETIC ENERGY is coupled to a

waveguide by means of a probe or loop radiators driven
from a source through a coaxial line. A rigorous solution of
the problem of a cylindrical probe parallel to the electric
field in a rectangular waveguide has been presented by
Collin [1]. Harrington [2] has found a method for deter-
mining an equivalent network of the junction between a
coaxial line and a rectangular waveguide and has deter-
mined the resistive part of the input impedance seen by a
coaxial line from the stationary formula for the impedance.
An analysis for the determination of variation of both
resistive and reactive parts of the input impedance for
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a cylindrical probe exciting a circular cylindrical waveguide
has not been reported in the literature.

In this paper, expressions for the real and imaginary parts
of the input impedance seen by a coaxial line driving a
cylindrical probe in a dominant TE;, mode circular wave-
guide are derived. Assumption of a purely filamentary radial
probe leads to a divergent series for the imaginary part of the
input impedance [2]. For the purpose of analysis the thin
cylindrical probe is assumed to be replaced by a curvilinear
metallic strip in the cross section of the waveguide. This
assumption simplifies the analysis considerably and leads to
an expression for the imaginary part of the inputimpedance
in the form of an infinite series which is convergent. A
formula for the input impedance seen by a coaxial line is
derived for a circular cylindrical waveguide terminated in a
matched load on one side and in a short circuit at a distance
L, from the probe on the other side. The expressions for the
parameters of the equivalent network of the junction are
also derived.

The variation of the input impedance with frequency seen
by a coaxial lineis computed for probe length 1,0.6 < I < 0.8
cm, probe diameter d = 0.2 cm, and 0.7 < L, < 1.0 cm. The
theoretical results on variation of the input impedance seen
by a coaxial line and the VSWR in a coaxial line are in close
agreement with the experimental data for a radial probe
having a diameter equal to the maximum width of the
curvilinear strip.
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Fig. 1. Coaxial line to circular waveguide feed. (a) Longitudinal section.

(b) Transverse section. (c) and (d) Equivalent circuit. (¢) Exploded view
of Fig. 1(b)

II. ANALYSIS

Fig. 1(a) shows a coaxial line which drives a thin cylindri-
cal probe in a dominant TE ; ; mode circular waveguide. For
convenience in the analysis the probe in the circular wave-
guide is assumed to be replaced by a curvilinear strip in the
cross section (z = 0 plane) of the waveguide as shown in Fig.
1(b). An equivalent circuit useful for calculation of the input
impedance seen by a coaxial line when one mode propagates
is shown in Fig. 1(c), in which inputimpedance Z* forz = 0
appears in parallel with input impedance Z~ = JX' for
z = 0. An expanded view of the strip of Fig. 1(b)is shown in
Fig. 1(e).

The parameters of the equivalent circuit (Fig. 1(c)) can be
determined from the stationary formula for the input im-
pedance seen by a coaxial line [2], which is given by

ZinlA
1 Z( ” J; - e; ds)?
cross section
Iln ,ZE) I-T)(+I7)" '+ -1+ 04!

(1)

where J, is the surface current in the cross-section plane
z = 0, Z; is the modal impedance, ¢; is the normalized vector
mode function, I'; and T, are, respectively, the +zand —z
reflection coefficients for the ith mode, and I, is the input
current at reference plane A. Since the waveguide supports
only the dominant mode (i = 0), Z; is real for i = 0 and
imaginary for i # 0. Further, I'; = 0 for i # 0. Equation (1)
can now be simplified to the form

YAV ,
Zin|A=m2m +JX4 (2a)
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where
2
o WIREC R
M \oross section
2
X, = 21‘2“ ;0 (‘ ”. Js-eids) 2c)

Z+ = Zo
and
Z~ =jZ, tan (By Ly)

Bo being the propagation constant for the i = 0 mode.
In order to determine Z,,| , and the equivalent circuit of
the junction, it is necessary to determine J, for z = 0.

ITII. EXPRESSION FOR CURRENT DISTRIBUTION

In the coordinate system shown in Fig, 1 the probe length
extends from point D (p = a — I) to point C (p = a). The
distribution of the trial current in the curvilinear strip of Fig,
1(e) is assumed to be uniform in the ¢ direction and to have a
sinusoidal distribution of the form

1) = I sin K(I - {)

in the radial direction. In the above expression K = 2n/4
and { is the variable along the line CDO. For the
configuration shown in Fig. 1(e), the variable { for points D
and C is 0 and /, respectively. In the linear segment CD a
relation of the form { = Ap + B may be assumed. Evaluat-
ing the constants 4 and B from the values of ¢ and p at points
D and C, the relation between { and p is obtained as
¢ = —p + a. The current distribution, therefore, takes the
form

I(p) = I, sin K(I — a + p).

For the purpose of calculating J,, it will be assumed that
the diameter d of the probe is equal to the average between
the maximum and minimum widths of the curvilinear strip.
For a thin cylindrical probe of length ! and diameter d in a
circular cylindrical waveguide of diameter 2a the surface
current in the cross section z = 0 can, therefore, be assumed
to be of the form

Js=up£’sin K(l—a+p) for —A¢p <¢ <A

J,=0,

where

elsewhere

(3a)

Ap =d'2a ~ d)2a. (3b)

Since the expression for the input impedance is stationary in
character [2] the error produced due to this assumptlon is
small.

IV. EXPRESSION FOR THE REAL AND IMAGINARY PARTS
OF THE INPUT IMPEDANCE

The parameters m? and X ; of the equivalent circuit shown
in Fig. 1(c) are determined by using (3a) and the ortho-
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normalized vector mode functions for the mode of index n,p
(i = n,p) derived by Harrington [2]. The vector mode func-
tion e , for the dominant TE , ; mode of a circular waveguide
is given by

2 1
m(xty — 1) J1(x11)

: [——up%Jl(X'u(P/a)) cos ¢

[ —_—
€1 =

u L G sn o) )

The vector mode functions ey, for TE modes and ej;, for TM
modes are given by

. [ — 1,2 1,51y lp/a) s (1)

b pla) s 08)| (@b
enp T ; xnp']n+ 1(xnp)

2 st cos 10

- ud,%J,,(x,,p(p/a)) sin (n¢)] (4c)

where ¢, = 1forn = 0, ¢, = 2for n = 2. x,,, is the pth root of
dJ,(x)/dx = 0 and x,, is the pth root of J,(x) = 0.

Substituting (4a,b,c) into (2b) and (2c) the surface inte-
grals appearing in the expression for equivalent circuit
parameters m* and X, split into the product of two inte-
grals; integration with respect to variable ¢ and integration
with respect to variable p. The integration with respect to
variable ¢ appears in the form

Ad B A

| cospdp | cos(up)dp | sin (ng)de
YA Y —Ad t-Ad

which is expressed in the closed form. The integration with
respect to variable p, however, cannot be evaluated in the
closed form. The expressions for m* and X , are, therefore,
found to be

2 1
n(xF — 1) sin? (KI)J1(x,)

m? =

sin (d’/Za)J2
('/2a)

)
X, = - Go&n  +/(Xsp/Ka)* — 1 [sin (nd’/Za)]2

n=o =12 1(xsp)  sin® (KI) (nd'/2a)

. [‘1 sin [Ka(l/a — 1 + x)J1(x} x) dx}2
"1-la

: “11-1/ sin [Ka(l/a — 1 + x)J,(x,,x)x dxr. (6)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, NO. 11, NOVEMBER 1977

16 {=o08cm
T /i:oacm

8-4 88 92 96
FREQ.—»
@)
0-8
TC
3o 1 N £=0-8Cm
el - 9-2 \z=o7om
FREQ. £ =0-6GCM
08 '
(b)

Fig. 2. Variation of the normalized input impedance versus frequency
with [ as a parameter for L, = 1.0 cm. (a) Real part of the input
impedance. (b) Imaginary part of the input impedance.

For the calculation of the input impedance seen by the
coaxial line, the equivalent circuit of Fig. 1(c) is reduced to
the form shown in Fig. 1(d). The expressions for the real and
imaginary parts of the input impedance normalized with
respect to the characteristic impedance, Z,. = 50 Q, of the
coaxial line are given by '

m?Z, tan’ (B, L;)

. = . — 7
Vin Rm/Zoc Zoc(l + tan2 (BOLI)) ( a)
jxin =inn/Zoc =J(X2 + Xl)/ZOC (7b)
where
2

2= T+ tan? (B, L))

The line integrals appearing in the expression for m? and
jX, are numerically evaluated. The magnitude of reflection
coefficient at reference plane A seen by the coaxial line is

IF‘ ”__\/'})izn—"xizn_1

8
Vin+ Xt + 1 ®)
and, the VSWR in the coaxial line is given by
1+ |T|

The various quantities related to the design of transition are
evaluated by using (7)-(9).

It is found from the expressions (7a) and (7b) that the
input impedance seen by the coaxial line is a function of the
length of the probe, the distance L, of the conducting plate
from the probe, and the frequency of operation. Fora = 1.15
cm,d=d =02cm,L; = 1.0cm,and [ = 0.6,0.7,and 0.8 cm,
the variations of r;, and x;, with frequency evaluated from
(7a,b,c) and (8) are presented in Fig. 2. For I = 0.7 cm and
L, =07,08, 09, and 1.0 cm, the computed results on the
variations of r;, and x;, with frequency are shown in Fig. 3. It
is evident from Figs. 2 and 3 thatfor! = 0.7cmand L, = 1.0
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Fig. 3. Variation of the normalized input impedance versus freql}ency
with L, as a parameter for /=0.7 cm. (a) Real part of the input
impedance. (b) Imaginary part of the input impedance.
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Fig 4. Variation of input impedance versus frequency for I == 0.7 cm and

L, = 1.0 cm. (2) Real part of the input impedance. (b) Imaginary part of
the input impedance. Theory . Experiment 0——0.

cm the VSWR in the coaxial line has a low value over a
relatively large frequency range.

A transition witha = 1.15cm,d = 0.2cm, [ = 0.7cm,and
L, ~ 1.0 cm is fabricated. Using (6) and (7a,b,c), the varia-
tion of the parameters of the equivalent circuit of Fig. 1(d)
with frequency are evaluated and presented in Fig. 4. The
reactance jX, in the equivalent circuit results from the
energy stored in the evanescent modes generated by
the probe current, and is capacitive in nature. The reactance
jX, depends upon the position of the short-circuiting
plunger. For L, ~ 1.0 cm and a frequency range of 8.5-9.8
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Fig. 5. Variation of the input VSWR versus frequency for / = 0.7 cm and
L, = 1.0 cm. Theory . Experiment 0———0.

GHz, j X, is inductive. A comparison between the theoreti-
cal and experimental results on the totalinput impedance in
ohms seen by the coaxial line is also presented in the Fig. 4.
The experimental results on the variation of the input
VSWR with frequency is plotted in Fig. 5 together with the
computed results obtained from (7a,b,c)-(9).

V. CONCLUSION

In spite of the approximation made in the analysis, there is
a close agreement between the theoretical and experimental
results. In the frequency range 9.0-9.8 GHz the minimum
VSWR is less than 1.2. The frequency at which the reactive
part of the input impedance is zero is a function of the length
of probe and the position of the shorting plunger.

For a filamentary current exciting the waveguide, the
summation for jX, diverges. Assumption of a curvilinear
strip leads to a rapidly convergent series for jX ;. It is found
that the evanescent modes withp =landrn=0,1,2,3, ---,
12 make a significant contribution to the reactive part of the
input impedance. The contribution of the evanescent modes
with higher values of p is found to be quite small. If the short
circuit at z = — L, isreplaced by a matched load the reactive
part of the input impedance is jX, which is capacitive in
nature. In the presence of a short circuit the reactance jX’
appearing in Fig 1(c) is inductive for values of
0°< BoL,<90° For 0° < B, L, <45° the reactance curve
for jX, has a positive slope while for 45° < L, < 90° it
has a negative slope and for ,L, = 45° it has zero slope.
For L, = 1.0cm and afrequency range of 8.5-9.8 GHz, 8, L,
lies between 45 and 74°. Since over this frequency range
variation in jX, is very small and the curve for jX, has a
negative slope, the input reactance shows a negative slope
with frequency.

ACKNOWLEDGMENT

The authors would like to thank Prof. G. S. Sanyal and
Prof. J. Das for their kind interest in the work.

REFERENCES

[1] R. E. Collin, Field Theory of Guided Waves. New York: McGraw-Hill,
1960, ch. 7, pp. 258-307.

{2] R. F. Harrington, Time Harmonic Electromagnetic Field. New York:
McGraw-Hill, 1961, ch. 8, pp. 381-440.




