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Input Impedance of Coaxial Line to Circular
Waveguide Feed

M. D. DESHPANDE, STUDENT MEMBER, lEEE, AND B. N. DAS

Abstract—The expressions for the real and imaginary parts of the

input impedance seen by a coaxial line driving a thin cylindrical probe
in a dominant TE ~~ mode circular waveguide are derived. The
analysis is cqried out by assuming that the cylindrical post is

replaced by a curvilinear strip having maximum width equal to the
diameter of the probe. Theoretical results on input VSWR and input
impedance seen by a coaxial line are in close agreement with

experimental data.

I. INTRODUCTION

ELECTROMAGNETIC ENERGY is coupled to a

waveguide by means of a probe or loop radiators driven
from a source through a coaxial line. A rigorous solution of

the problem of a cylindrical probe parallel to the electric

field in a rectangular waveguide has been presented by
Collin [1]. EIarrington [2] has found a method for deter-

mining an equivalent network of the junction between a

coaxial line and a rectangular waveguide and has deter-

mined the resistive part of the input impedance seen by a

coaxial line from the stationary formula for the impedance.

An analysis for the determination of variation of both
resistive and reactive parts of the input impedance for
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a cylindrical probe exciting a circular cylindrical waveguide

has not been reported in the literature.

In this paper, expressions for the real and imaginary parts

of the input impedance seen by a coaxial line driving a

cylindrical probe in a dominant TE ~~ mode circular wave-

guide are derived. Assumption of a purely filamentary radial

probe leads to a divergent series for the imaginary part of the

input impedance [2]. For the purpose of analysis the thin

cylindrical probe is assumed to be replaced by a curvilinear

metallic strip in the cross section of the waveguide. This

assumption simplifies the analysis considerably and leads to

an expression for the imaginary part of the input impedance

in the form of an infinite series which is convergent. A

formula for the input impedance seen by a coaxial line is

derived for a circular cylindrical waveguide terminated in a

matched load on one side and in a short circuit at a distance

J!,l from the probe on the other side. The expressions for the

parameters of the equivalent network of the junction are

also derived.

The variation of the input impedance with frequency seen
by a coaxial line is computed for probe length 1,0.6 <1 <0.8

cm, probe diameter d = 0.2 cm, and 0.7 < L ~ < 1.0 cm. The

theoretical results on variation of the input impedance seen

by a coaxial line and the VSWR in a coaxial line are in close

agreement with the experimental data for a radial probe

having a diameter equal to the maximum width of the

curvilinear stfip.
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Fig. L Coaxial line to circular waveguide feed. (a) Longitudinal section.
(b) Transverse section. (c) and (d) Equivalent circuit. (e) Exploded view
of Fig. l(b).

II. ANALYSIS

Fig. l(a) shows a coaxial line which drives a thin cylindri-

cal probe in a dominant TE ~~mode circular waveguide. For

convenience in the analysis the probe in the circular wave-
guide is assumed to be replaced by a curvilinear strip in the

cross section (z = O plane) of the waveguide as shown in Fig.

l(b). An equivalent circuit useful for calculation of the input

impedance seen by a coaxial line when one mode propagates

is shown in Fig. 1(c), in which input impedance Z + for z = O

appears in parallel with input impedance Z- = JX’ for

z = O. An expanded view of the strip of Fig. 1(b) is shown in

Fig. l(e).

The parameters of the equivalent circuit (Fig. l(c)) can be

determined from the stationary formula for the input im-

pedance seen by a coaxial line [2], which is given by

Zi( Jj J, “ ei ds)z

!Z
cross section

‘~~n ~=o(l ‘r~)(l +rtT)-’ + (1 – r~)(l + r:)-’

(1)

where J, is the surface current in the cross-section plane

z = O, Zt is the modal impedance, ei is the normalized vector

mode function, r; and r,- are, respectively, the + z and – z

reflection coefficients for the ith mode, and I in is the input

current at reference plane A. Since the waveguide :supports
only the dominant mode (i = O), Zi is real for i = O and

imaginary for i # O. Further, ri = O for i # O. Equation (1)

can now be simplified to the form

zinlA= m2zf++zz_+jX1 (2a)

where

(2b)
1

( 1 )

2
m2=_ J, “ e. ds

I:n
rosssection

‘l=& .~o ‘i ( JJ )

2

J, “ ei ds (2C)
m z+

ross section

z+ = Z.

and

Z- = jZo tan (Po L)

Do being the propagation constant for the i = O mode.

In order to determine Zi” 1Aand the equivalent circuit of

the junction, it is necessary to determine J. for z = O.

III. EXPRESSION FOR CURRENT DISTRIBUTION

In the coordinate system shown in Fig. 1 the probe length

extends from point D (p = a – 1) to point C (p = a). The

distribution of the trial current in the curvilinear strip of Fig.

l(e) is assumed to be uniform in the @direction and to have a

sinusoidal distribution of the form

1({) =10 sin K(l – ~)

in the radial direction. In the above expression K = 2n/L

and c is the variable along the line CDO. For the

configuration shown in Fig. 1(e), the variable ~ for points D

and C is O and 1, respectively. In the linear segment CD a

relation of the form ~ = Ap + B may be assumed.” Evaluat-

ing the constants A and B from the values of < and p at points

D and C, the relation between ~ and p is obtained as

< = – P + a. The current distributitin, therefore, takes the
form

l(p) =10 sin K(l – a + p).

For the purpose of calculating J., it will be assumed that

the diameter d of the probe is equal to the average between

the maximum and minimum widths of the curvilinear strip.

For a thin cylindrical probe of length 1and diameter d in a

circular cylindrical waveguide of diameter 2a the surface

current in the cross section z = O can, therefore, be assumed

to be of the form

J,= uP$sin K(l – a + p), for –A@ <~ <Ag5

J,= O, elsewhere (3a)

where

Aq5= d/2a z d/2a. (3b)

Since the expression for the input impedance is stationary in

character [2] the error produced due to this assumption is

small.

IV. EXPRESSIONFOR THE REAL AND IMAGINARY PARTS

OF THE INPUT IMPEDANCE

The parameters m2 and X ~of the equivalent circuit shown

in Fig. 1(c) are determined by using (3a) and the ortho-
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normalized vector mode functions for the mode of index nlp

(i - n,p) derived by Barrington [2]. The vector mode func-

tion ef ~for the dominant TE ~~mode of a circular waveguide

is given by

“l= G&J

(4a)

The vector mode functions e;P for TE modes and e;P for TM

modes are given by

J

2En 1
e:P=

?T(X$– nz) .Jn(x&J

“[

– up f .lJx;p(p/f2)) sin(@)

+ u~ : Yn(x&Jp/a)) Cos O’@)
I

(4b)
.

em=_

J

En 1
w

z ‘npJn + 1 (Xnp)

[’

“ up ~ J~(x.p(p/a)) cos (n@)

– % ~ Jn(xnp(P/a)) sin(@)
1

(4C)

wheres. = 1 for n = O,s. = 2 for n = 2. x~p is the pth root of

dJ.(x)/dx = O and X.p is the pth root of J.(x) = O.

Substituting (4a,b,c) into (2b) and (2c) the surface inte-

grals appearing in the expression for equivalent circuit

parameters mz and Xl split into the product of two inte-

grals; integration with respect to variable O and integration

with respect to variable p. The integration with respect to

variable ~ appears in the form

, A+ .A+ . A@

COS + d~ COS(n+) do sin (nr#) do
‘–A4 ‘ –A@ ‘–A4

which is expressed in the closed form. The integration with

respect to variable p, however, cannot be evaluated in the

closed form. The expressions for m2 and X ~ are, therefore,
found to be

2 1
m2 =

[1

sin (d’/2a) 2

n(x;21 – 1) sin2 (Kl)J~(xj ~) (d’/2a)

“[l

.1

sin [Ka(l/a – 1 + x)] Jl(x\l x) dx
!

(5)
“l–ha

xl = – ~ ~ 2“0’”
n=o p=l ‘.+l(xfIP) %%N!ni%H2

“[l

.1

1

2

sin [Ka(l/a – 1 + x)J”(x~Px)x dx . (6)
‘l–l/a
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Fig. 2. Variation of the normalized input impedance versus frequency
with 1 as a parameter for L, = 1.0 cm. (a) Real part of the input

impedance. (b) Imaginary part of the input impedance.

For the calculation of the input impedance seen by the

coaxial line, the equivalent circuit of Fig. 1(c) is reduced to

the form shown in Fig. l(d). The expressions for the real and

imaginary parts of the input impedance normalized with

respect to the characteristic impedance, ZOC= 50 Q, of th’e

coaxial line are given by

m2Zo tanz(/30L1)
yin= Rin/ZOc =

Z.C(l + tan2 (flo L1))
(7a)

jXi~ = jXJZoc = j(X2 + X~)/Zoc (7b)

where

m2Zo tan (/?OLl)

jx2 ‘~ [1+ tan2 (flol,l)]”
(7C)

The line integrals appearing in the expression for m2 and

jXl are numerically evaluated. The magnitude of reflection

coefficient at reference plane A seen by the coaxial line is

]rl=--l
/’-” +1

and, the VSWR in the coaxial line is given by

(8)

(9)

The various quantities related to the design of transition are

evaluated by using (7)-(9).

It is found from the expressions (7a) and (7b) that the

input impedance seen by the coaxial line is a function of the

length of the probe, the distance L.l of the conducting plate
from the probe, and the frequency of operation. For a = 1.15

em, d = d’ = 0.2cm, Ll = 1.0 cm, and 1= 0.6,0.7, and O.8 cm,
the variations of ri. and x i. with frequency evaluated from

(7a,b,c) and (8) are presented in Fig. 2. For 1= 0.7 cm and

LI = 0.7, 0.8, 0.9, and 1.0 cm, the computed results on the
variations of rin and xi. with frequency are shown in Fig. 3. It

is evident from Figs. 2 and 3 that for 1= 0.7 cm and LI % 1.0
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Fig. 3. Variation of the normalized input impedance versus frequency
with LI as a parameter for 1= 0.7 cm. (a) Real part of the input
impedance. (b) Ima@ary part of the input impedance.
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Fig. 4. Variation of input impedance versus frequency for 1==0.7 cm and
l., = 1.0 cm. (a) Real part of the input impedance. (b) Imaginary part of
the input impedance. Theory —. Experiment 0+.

cm the VSWR in the coaxial line has a low value over a

relatively large frequency range.

A transition with a = 1.15 cm, d = 0.2cm, 1= 0.7cm,and
L ~ % 1.0 cm is fabricated. Using (6) and (7a,b,c), the varia-

tion of the parameters of the equivalent circuit of Fig. l(d)

with frequency are evaluated and presented in Fig. 4. The

reactance jXl in the equivalent circuit results from the

energy stored in the evanescent modes generated by

the probe current, and is capacitive in nature. The reactance

jX2 depends upon the position of the short-circuiting

plunger. For LI % 1.0 cm and a frequency range of 8.5-9.8

4

t[

FREQ.~

Fig. 5. Variation of the input VSWR versus frequency for 1= 0.7 cm and

L, = 1.0 cm. Theory —. Experiment 0+.

GHz, jXz is inductive. A comparison between the theoreti-

cal and experimental results on the total input impedance in

ohms seen by the coaxial line is also presented in the Fig. 4.

The experimental results on the variation of the input

VSWR with frequency is plotted in Fig. 5 together with the

computed results obtained from (7a,b,c)-(9).

V. CONCLUSION

In spite of the approximation made in the analysis, there is

a close agreement between the theoretical and experimental

results. In the frequency range 9.0--9.8 GHz the minimum

VSWR is less than 1.2. The frequency at which the reactive

part of the input impedance is zero is a function of the length

of probe and the position of the shorting plunger.

For a filamentary current exciting the waveguide, the

summation for jX ~ diverges. Assumption of a curvilinear

strip leads to a rapidly convergent series for jX1. It is found

that the evanescent modes with p = 1 and n = O, 1,2,3, ~..,

12 make a significant contribution to the reactive part of the

input impedance. The contribution of the evanescent modes

with higher values of p is found to be quite small. If the short

circuit at z = – LI is replaced by a matched load the reactive

part of the input impedance is jXl which is capacitive in

nature. In the presence of a short circuit the reactance jX’

appearing in Fig. l(c) is inductive for values of

0°< /?OL ~< 9(Y.For (Y < /l. LI <45° the reactance curve
for jX2 has a positive slope while for 45°< ~oLl s 90” it

has a negative slope and for /30LI = 45° it has zero slope.

For LI = 1.0 cm and a frequency range of 8.5-9.8 GHz, Do LI

lies between 45 and 74. Since over this frequency range

variation in jX 1 is very small and the curve for jX2 has a

negative slope, the input reactance shows a negative slope

with frequency.
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